Remarks on the quantum gravity interpretation of 4D dynamical triangulation

نویسنده

  • Jan Smit
چکیده

Here the path integral is over real metrics modulo coordinate transformations, G denotes a renormalized Newton constant and the · · · indicate higher derivative terms like R, etc. There may also be nonlocal terms related to the conformal anomaly [2]. The integral over μ produces the volume fixing delta function δ( ∫ dx √ g − V ). If this integral were done in the saddle point approximation, the saddle point value μc would be related to a renormalized cosmological constant by

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

4D simplicial quantum gravity with a nontrivial measure.

We study 4d simplicial quantum gravity in the dynamical triangulation approach with a non-trivial class of measures. We find that the measure contribution plays an important role, influencing the phase diagram and the nature of the (possible) critical theory. We discuss how the lattice theory could be used to fix the quantum measure in a non-ambiguous

متن کامل

Volume dependence of the phase boundary in 4D dynamical triangulation

The number of configurations of the dynamical triangulation model of 4D euclidean quantum gravity appears to grow faster than exponentially with the volume, with the implication that the system would end up in the crumpled phase for any fixed κ2 (inverse bare Newton constant). However, a scaling region is not excluded if we allow κ2 to go to infinity together with the volume. email: [email protected]...

متن کامل

Gravitational binding in 4D dynamical triangulation

In the dynamical triangulation model of four dimensional euclidean quantum gravity we investigate gravitational binding. Two scalar test particles (quenched approximation) have a positive binding energy, thereby showing that the model can represent gravitational attraction. email: [email protected] email: [email protected]

متن کامل

Two-point functions in 4D dynamical triangulation

In the dynamical triangulation model of 4D euclidean quantum gravity we measure two-point functions of the scalar curvature as a function of the geodesic distance. To get the correlations it turns out that we need to subtract a squared one-point function which, although this seems paradoxical, depends on the distance. At the transition and in the elongated phase we observe a power law behaviour...

متن کامل

Further evidence that the transition of 4d dynamical triangulation is 1st order

We confirm recent claims that, contrary to what was generally believed, the phase transition of the dynamical triangulation model of four-dimensional quantum gravity is of first order. We have looked at this at a volume of 64, 000 four-simplices, where the evidence in the form of a double peak histogram of the action is quite clear.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996